Exploring the Fuel Flexibility of Microbial Fuel Cells

O. Bretschger1,2, F. Viva3, Y. Gorby4, D. Kennedy4, K.H. Nealson2, F. Mansfeld1

1. The Mork Family Department of Chemical Engineering and Materials Science
 University of Southern California, Los Angeles, CA 90089-0241

2. Department of Earth Sciences
 University of Southern California, Los Angeles, CA 90089-0740

3. Department of Chemistry
 University of Southern California, Los Angeles, CA 90089-0152

4. Microbial Cell Dynamics Laboratory
 Pacific Northwest National Laboratory, Richland, WA 99354

A microbial fuel cell (MFC) utilizes the catalytic action of microorganisms to convert the chemical energy of fuel into electrical energy [1]. MFC’s can offer application flexibility because inherent microbial physiology allows many microbes and microbial communities to use several different chemical compounds as fuel. Additionally, microbes used as catalysts have the ability to self repair and quickly adapt to varying operational conditions. This study compares the performance of an MFC employing Shewanella oneidensis MR-1 (MR-1) as the biocatalyst while using different organic compounds as fuel.